Using Genetic Algorithm to Supporting Artificial Neural Network for Intrusion Detection System
نویسندگان
چکیده
Due to the recent trend of technologies to use the network based systems, detecting them from threats become a crucial issue. This paper investigates applying the following methods to detect the attacks in network: Genetic Algorithms (GA) with Artificial Neural Networks classifier, Modified Mutual Information Feature selection (MMlFS), Linear Correlation Feature Selection (LCFS), and Forward Feature Selection (FFS). Here, the capability of feature selection of LCFS, FFSA, MMIFS, and GA-ANN has been explored. We use KDD CPU dataset to obtain the results; which shows around 99% accuracy of applied methods in detecting threads. The requirement of GA with ANN is 18 features and there is respectively a requirement of 24, 21, and 31 features for MMIFS, LCFS and FFSA for efficiently detecting the attacks.
منابع مشابه
A New Method for Intrusion Detection Using Genetic Algorithm and Neural network
Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملThe Predictability Power of Neural Network and Genetic Algorithm from Fiems’ Financial crisis
Organizations expose to financial risk that can lead to bankruptcy and loss of business is increased nowadays. This may leads to discontinuity in operations, increased legal fees, administrative costs and other indirect costs. Accordingly, the purpose of this study was to predict the financial crisis of Tehran Stock Exchange using neural network and genetic algorithm. This research is descripti...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کامل